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Abstract— In this paper failure is assumed to be a discrete phenomenon. A modelling in which a
crack or a shear band is incorporated in the shape functions of the finite element formulation is
used. A discontinuous function of the displacement gradients acts as an additional localized mode
with a length scale parameter that is independent of the element size. A predefinition of the failure
zone is not necessary and the crack or shear band can be described with a relatively small number
of finite elements. The model is elaborated for simple mode-1 and mode-I1 problems. A comparison
with standard continuum modelis for failure has been made. © 1998 Elsevier Science L.td. All rights
reserved.

1. INTRODUCTION

For the description of failure processes in brittle and ductile materials roughly two
approaches can be distinguished : the continuum modelling vs the discrete modelling. In
continuum models the failure process is assumed to be smeared over the finite element. As
a consequence standard continuum models for mode-1 and mode-II failure behavior that
describe softening behavior result in mesh-dependent solutions. Due to the lack of an
internal length scale the size of the failure process zone is left unspecified. In finite element
calculations the length scale is therefore set by the size of the finite element. As a remedy
for this behavior several techniques have been proposed such as nonlocal models, gradient
models, rate-dependent models and micro-polar models for mode-11 localization problems
(Aifantis, 1984 ; Pijaudier-Cabot and Bazant, 1987 ; Needleman, 1988 ; Lasry and Belyts-
chko, 1988 ; Miihlhaus and Aifantis, 1991 ; de Borst et af.. 1992 ; Sluys, 1992 ; Sluys et al.,
1992). All models (i) introduce a length scale parameter (ii) keep the mathematical problem
well-posed and (i1i) remove mesh-size and mesh-orientation dependence. Their major dis-
advantage is that the localization zone must be analyzed with a very fine mesh. Since the
strain profile in the localization zone is continuous with steep gradients a large number of
elements is needed to describe this accurately. The exact number of elements that is needed
is determined by the length scale parameter (size of the localization zone), the constitutive
equation for softening (shape of the localization zone) and the type of element (order of
interpolation) that is used. Remeshing strategies are necessary to make these models
applicable for large scale computations.

An alternative approach is the modelling of the failure zone as a discrete phenomenon.
For instance interface elements can be used to model failure in a discontinuous manner.
The crack or shear band is modelled by discontinuous displacements along the interface
elements. A disadvantage is that the localization zone should be predefined which is a
probiem in cases where the location of the failure zone is unknown. The use of a mesh-
realignment procedure can overcome this problem but this technique is difficult to
implement (Larsson, 1990). A predefinition of the failure zone is not necessary when the
discontinuity that represents the crack or the shear band is already incorporated in the
shape functions of the finite element. Two models have been discussed in literature in
which the addition of so-called localized modes to the element formulation is used for the
modelling of failure processes. Firstly, a modelling with strong discontinuities is proposed
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by e.g. Ortiz er al. (1987), Klisinski et al. (1991), Simo et al. (1993), Simo and Oliver (1994),
Armero and Garikipati (1995), Larsson et al. (1995), Lotfi and Shing (1995) and Larsson
and Runesson (1996), in which a jump in the displacement field is assumed. To overcome
the problem of infinite strains and Dirac-delta functions in the constitutive description the
concept of a regularized softening parameter is used which is made dependent on a length
scale parameter. This parameter plays the role of characteristic length in the model.
Secondly, Belytschko et al. (1988) used a model with the discontinuity formulated in the
displacement gradient field or strain field. This is a so-called weak discontinuity model. A
length scale parameter defines the size of the localization zone in which the additional jump
functions are active. This length scale parameter plays a similar role as in the above
mentioned continuum models. [t is independent of the finite element size and the deter-
mination of it should be carried out by a combined experimental/numerical study. In this
paper the second approach will be followed for the modelling of mode-1 failure with a crack
model and mode-I1 failure with a plasticity model. The features of the approach will be
discussed by means of simple one- and two-dimensional finite element calculations. A mesh-
sensitivity study has been carried out and the model is compared to standard models for
failure. Two-dimensional simulations with the weak discontinuity model have been used to
assess the propagation of localization bands in structured and unstructured meshes.

2. KINEMATICS OF DISCONTINUOUS FAILURE

In the approach proposed in this paper a discontinuity of velocity gradient at the edges
of the localization zone is assumed (see Fig. 1). The displacements and the velocities in the
localized area are still continuous. For a jump in velocity gradient #,; between cracked and
non-cracked material or between the area inside and outside a shear band we define

|" u; ,ﬂ = amn,;, (H

in which the vector m is the normal to the discontinuity plane, the vector m defines the
nature of the discontinuity and # is the jump coefficient. For a pure mode-I failure plane m
is aligned with n and n'm = 1, on the other hand for a pure mode-II failure m is per-
pendicular to n and n'm = 0. Furthermore in Fig. I the angle ¢ determines the orientation
of the discontinuity plane and the parameter / plays the role of the localization band width.
This parameter appears as an independent material parameter and is not set by the finite
element size. From the jump of velocity gradient we can define the jump in strain rate
according to

—

Fig. 1. Definition of the displacement gradient discontinuity.
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: &
[6,] = i(min,-%m,-n,) (2)
or for the plane stress situation
fe ' mi, cos )
le,] |=a m,. sin 0 = 4q, 3)
170 \m, sin 6 +m, cos 0

in which (n,,1,)" =(cosf,sin0)’. At both edges of the localization band we distinguish
jumps in the displacement gradient. We define two jump coefficients %, and a, that determine
the additional strain field of the localized mode. The jump &, represents the decrease in
strain in the elastic area and &, denotes the increase of strain in the inelastic area, both with
respect to a formulation without additional jump functions. We can now derive expressions
for the strain rate outside the band &, and inside the band &, according to

& =La—a,q “4)
éz = Ll:l+&2q, (5)

in which the differential operator matrix L for plane stress is defined as

ax 0
(’}.
L= 0 ol (6)
c+ 0
3 o

In a finite element set-up we discretize the continuous displacement field u by
o = Ha, (7
in which the matrix H contains the interpolation polynomials and 4 are the nodal velocities.
If we substitute eqn (7) and introduce the strain-nodal displacement matrix B = LH eqns
(4) and (5) become
& =Ba—a,q (8)

For convenience we can rewrite eqns (8) and (9) by multiplication of the additional strain
field by the scalar quantity q"Ba and obtain

¢ =Ba (10)
and
& = B,a (1D

where
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B, = [I-2,qq"]B (12)
B, = [1+2.4qq"]B (13)

with &, = 2,q"Ba and &, = z.q'Ba.

3. MODE-I FAILURE

As discussed above two regions have been defined in a medium that undergoes local-
ization. In the elastic part of the material the total strain rate & equals the elastic strain rate
1‘;&)

£ =& (14y
and the constitutive equation is given by
&, = DYE. (15)

with matrix D containing the elastic stiffness moduli. For the localized part that represent
the cracked material we apply 4 decomposition of total strain rate & into the elastic strain
rate & and the crack strain rate &

b= 8 (16)

When incorporating the crack stress-crack strain laws it is convenient to use the local #, -
coordinate system in a two-dimensional configuration, which is aligned with the dis-
continuity (see Fig. 1). This necessitates a transformation between the crack strain rate &
in the global x, y, z-coordinates and the crack strain rate €5 in the local coordinates. The
crack strain rate in the local coordinate system is defined as

e =[5 208, (17)

S0l

where ¢4" is the mode-1 crack normal strain rate and é5' 1s the mode-11 crack shear strain
rate. The relation between local and global strain rates reads

& = Ney (18)
where N is the transformation matrix given by

cos” ) —sinflcos
N = sin® ) sinflcos0 |, (19

2sinfcos  cos® —sin® 0.

with @ the inclination angle of the normal of the crack n with the x-axis (see Fig. 1). The
angle is determined by the principal stress direction at the onset of cracking. An essential
feature of the model is that N is fixed upon crack formation so that the concept belongs to
the class of fixed crack concepts. If we let the discontinuity plane rotate with principal
stresses a so-called rotating discontinuity model can be obtained.

In a similar way we can define a crack stress rate vector
ty, = [, " (20)

in which /2" is the mode-I normal crack stress rate and #' is the mode-11 shear crack stress
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rate. The relation between the stress rate in the global coordinate system and the local stress
rate can be derived to be

ii:Nld':- (21)

To complete the system of equations we need a constitutive model for the elastic con-
tribution of the cracked material given by

and the relation between the local crack strain rate and the local crack stress rate

t,=Dved (23)

o 0 .
D = | . (24)
0 fu

in which # is the mode-1 (# < (). The shear stiffness in the crack is obtained by 4 mul-
tiplication of the elastic shear stiffness ¢ with a shear reduction factor 8. Coupling effects
between the two modes are not considered. In this model fracture is assumed to be initiated
in mode-1 and mode-II effects enter upon rotation of the principal stresses.

Now, the overall stress—strain relation of the model with respect to the global coor-
dinate system can be developed. Combining eqns (16) and (22) and subsequent substitution
of egn (18) vields

with

6. = D[&, —Ne&yJ. (25)

Premultiplying this equation by N' and substituting eqns (21) and (23) vields the relation
between the local crack strain rate and the global strain rate

& = [D +NTDN] 'N'D<%, . (26)

The overall relation between global stress rate and global strain rate is obtained by sub-
stituting eqn (26) into (25)

&, = D" D*|i. (

3
~1
~—

with
D* = PD*N[D* +N'D°N] 'N'D*. (28)

In this derivation only one crack or discontinuity per integration point is considered, but
it 1s possible that due to the rotation of principal stresses new cracks arise. The crack strain
1s then decomposed into separate contributions from the multi-directional cracks (Rots,
1988). The integration of eqn (28) can be done by a one-step forward scheme which is exact
if the matrices D¢ and D® remain constant during the time step. When, for instance, D is
non-constant a predictor-corrector method can be used in an inner iteration loop to
determine the incremental stresses. Secant unloading 1s used which implies that also in the
unloading stage a split up of the finite element into an elastic part Q, and a localized part
Q. is applied.

In the model the unknowns mi,. m,. %, and 2 need to be determined. The assumptions
of compatibility of deformation and traction continuity over the discontinuity lines have



4262 L. J. Sluys and A. H. Berends

been used (see also Belytschko er «l., 1988). The addition of the localized mode to the
standard shape functions that describe the motion of the body may not lead to additional
nodal displacements. Therefore compatibility of deformation is assumed by means of

"

& dQ,, (29)

Q,

[észJ & dQ, +
Q Q.

Y

W

in which the total area of an element Q = Q,+£), and & = Ba is the strain rate of the
underlying element without additional modes. This condition coincides with a restriction
that follows from the patch test, namely additional displacements due to extra non-
conforming modes must vanish (Taylor er al.. 1986). Substituting eqns (8) and (9) into (29)
gives

r "
| -~-\1,qu]+J %,qdQ, = 0. (30)
Q.

Jo,

Dependent on the type of element that is used the integrals from egn (30} can be calculated
and a relation

o2, =y OF A = Cda 3
can be derived. For the three-noded element that is used in Section 6 we have ¢ = Q./Q,.

Furthermore, we assume traction continuity in a direction perpendicular to the disconti-
nuity. So, if we consider the local n, -coordinate system we assume that

] :
()= -
which equals
N6, —N'6. =0, (33)
in which eqgns (15) and (27) can be substituted which gives
N'D, ~N'[D* —~D*]¢, = 0. (34)

Now, the strain fields with the localized modes according to eqns (8) and (9) can be used
to obtain

N'D¢(Ba—a,q) = N'[D°— D*](Ba+d.q). (35)
which can be rewritten in
N'[(14¢)D* —D*}d,q = N'D*Ba, (36)

when &; = ¢, is used. This results in a system of two equations with the unknowns %., m
and m,. Rewriting the left-hand side as

X

Ag = N'D*Ba. (37

with
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g, = qm, (38)
g, = &1, 39
and if we solve eqn (37) for ¢, and ¢, and combine this with the normality condition
A =1, (40)
it follows that
&= gty (41)
which means that with m, = ¢,/&,, m, = ¢,/&, and &, = ¢, the system is completely solved.
The angle 8 can be kept constant ( fixed discontinuity model) or updated every step and
iteration (rotating discontinuity model) but the vector m and the amplitudes &, and &,

continuously change during computation. The vector m is uncoupled from vector n and
therefore not necessarily aligned with n, which allows for mixed-mode effects.

4. MODE-II FAILURE
For the case of mode-II failure a plasticity concept is applied. Plastic deformation
occurs in the discontinuity band and elastic deformation occurs outside of it. Again, for
the elastic part Q, we have
b= 8 (42)
and

6, = D%,. (43)

For the plastic part of the element Q. we decompose the total strain rate into elastic and
plastic parts according to

&y = 85+ 85, (44)
The stress—strain relation can be written as
&> = Df(, —9). (45)
For associative plasticity the plastic strain rate vector is defined as

B = AR, (46)

123

in which 2 is a non-negative scalar and i a vector, representing the magnitude and the
direction of the plastic flow, respectively. The vector fi is taken as the normal to the yield
surface f'according to

) 47
fi = ot

o (47)
The yield function f'is a function of stress and the scalar-valued hardening/softening
parameter x. For plastic behavior we define
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fle..x) =0 and fio,.x) =0 (48)

with the second condition known as the consistency condition, which can be elaborated as
Ao, + Kk =0. (49)

If we define the softening modulus / as

L of
he Y (50)

/0K
an explicit expression for the magnitude of the plastic flow can be derived by premultiplying
eqn (45) by ii’. Combination with eqns (46), (49) and (50) then yields

j o= i
h+at D

(51)

We can now obtain the relation between stress rate and strain rate by substitution of eqn
(51) in eqn (45)

G2 = (D —D*)i,. (52)
with
Dfd' D
b DL (53)
h+a'D%

The integration of this rate equation has been carried out with a standard implicit Euler
backward return mapping scheme.

For the mode-II problem the inclination angle @ of the discontinuity plane with the x-
axis is determined from a discontinuous bifurcation analysis. We make use of the acoustic
tensor defined as

Q//A/ = n/(l)fﬂu’ - l)?/?/\/)n/“ (

i

4)
At the onset of localization at a local material point we have (see Hill, 1962 ; Rice, 1976)

After this point the determinant of the acoustic tensor becomes negative and the direction
f can be derived from (see Miehe and Schréder, 1994)

d (det(Q,4,)) = 0. (56)
da

If we fix the direction upon initiation of the shear band we again have a fixed discontinuity
model. On the other hand, if we let 0 rotate after initiation according to egn (56) we have
a rotating discontinuity model.

The jump coefficients @, and &, in eqns (8) and (9} are obtained from the compatibility
condition and the assumption of stress continuity over the discontinuity line. So, eqn (29)
holds which gives the %, = ¢7, relation and substituting D* from egn (53) into eqn (37)
provides the explicit values for the jump coeflicients %,, &, and vector m according to the
procedure described in Section 3.
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5. FINITE ELEMENT DISCRETIZATION
To enforce equilibrium we assume at the end of the time or loading step

L'e ™™ =0 (57)

The weak form of eqn (57) for an element with an elastic zone Q, and a localized zone Q,
is as follows

J sa'[L'a\ M]dQ, + [ su'[L'e) ] dQ, =0, (58)
Q

W2

or invoking the divergence theorem

n ”

deja) M dQ, + [ d&16, M dQ, —

Jo, Ja, J

SaTp M dS = 0. (59)

5

in which p are the tractions at boundary S. For an incremental-iterative procedure the
stress at time 7+ Ar in both parts is decomposed into the stress at time ¢ and the stress
increment

o5 =6\ .+ A0 ., (60)

which can be substituted into eqn (59)

» "

[ Ot Ao, dQ, + | 681A6.dQ. = | ou'p " MdS— | dElel dQ, — | dEial dQ,

Jo, JO, Js Jo, Ja,

(61)

The constitutive equations in linearized format can be used in eqn (61) to obtain

08 D°Ag, dQ, + | d&1DFAe, dQ,
v W2y
= | da'p"MdS— | dile) dQ, —J delat dQ,.  (62)

Js Jo, Q.

in which D¢ = D~ D* with D* for mode-I failure given in eqn (28) and for mode-11 failure
given in eqn (53). Now for g, and &, the enhanced strain fields according to eqns (10) and
(11) can be substituted. Together with eqn (7) and the assumption that the equation must
hold for any admissible field da transforms egn (62) in

KAa = f. 1, (63)

in which

K:J BIDB, dQ, + J BID'B, dQ.,, (64)
o,

(o

f = [ H'p' " ds, (65)

o
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- standard strain field

—— strain field with
localized mode

azBAa

a,BAa _{I

BAa

®
®

Fig. 2. Linear elements with additional discontinuous shape functions. Left: truss element and
right: triangular element.

»

f = Efrf’ldQ,+[ Bls, dQ.. (66)

Jo, JO.

A two-noded truss element and a three-noded triangular element have been used in this
study (see Fig. 2). Both elements have one integration point in which we define a dual set
of stresses ¢, and g, and strains £, and &, corresponding to the elastic part and the localized
part. To carry out a proper integration of the eqns (64)-(66) the areas €}, and Q, have to
be determined. The centre of the localization band is assumed to go through the integration
point and its width is set by the length scale parameter /. In the two-dimensional element
also a length of the discontinuity line has to be specified. Belytschko et a/. (1988) proposed

a= 0, (67)

with Q the total area of the finite element. We can also calculate ¢ correctly, i.e. dependent
on the angle under which the localized mode is superimposed. The effect of the choice for
a will be discussed in the next section.

6. EXAMPLES

First, the pure mode-1 problem will be discussed. In this case the normal to the failure
plane n is aligned with vector m, i.e. n” = m" =(1,0)". Hence, after the addition of the
localized mode the incremental strains outside and inside the localization zone according
to eqns (8) and (9) reduce to

A&, =(1—u,)BAa (68)
and

Aé- = (1 +a-.)BAa, (69)
with B = (1/d)| — 1. 1] for a two-noded truss element and with 2, and «, the amplitudes of
the localized mode as given in Fig. 2. The length of the truss element is  and / is the
localization band width as explained in Section 2. The amplitudes %, and «, can be deter-

mined from compatibility and traction continuity. For the two-noded truss element con-
dition (29) results in
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dBAa = (d—NAe¢, +1Ae-, (70)

which after use of eqns (68) and (69) leads to

/o
=5 o 71
" <d-—/)°‘- 7

The assumption of traction continuity [eqn (33)] in 1-D format yields
AG! S A(J-z. (72)
The constitutive equations for the elastic and localized part are given in eqns (13) and (27),

respectively. If we only consider the normal component and substitute these expressions
into eqn (72) we obtain

EAg, = (EA~ —':?L ) A, (73)

with £ the Young’s modulus. The softening modulus is taken here as a constant equal to
h = —f /¢, with £, the tensile strength and ¢, the ultimate strain. Combination of eqn (73)
with (68), (69) and (71) gives an explicit expression for the amplitudes

_ (/(d—H)E .
M= A+ (E+{lid-D) 7
and
E
* h+(E4+-NMd—1)) )

So. z; and a, are functions of i If we have nonlincar softening the mode amplitudes change
during local iterations for an accurate stress update.

A tension bar modelled with truss elements (Fig. 3) is analyzed with and without the
inclusion of localized modes. Two different meshes have been used with 20 and 40 truss

L = 100 mm
- -

A=1mm 20 elements

WM*WM*W“W R o

40 elements
o}
f I i /'\\\

/ S

1
Eu

Fig. 3. One-dimensional tension bar with two-noded truss elements.
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FICfA)
1.0 -
0.5 20
40
0.0 Y ufle,L)
O 0.025 0.05
0.0 [ y ul(e, L)

0 le, 0.05

Fig. 4. Load-displacement curves, Top: standard element. Bottom : discontinuity elements.

elements, respectively. The length of the bar L = 100 mm and the cross-section 4 = 1 mm~.,
The material parameter set is as follows: the Young’s modulus £ = 10.000 N/mm”, the
tensite strength f; = 1 N/mm?, the ultimate strain &, = 0.01 and the localization band width

= 2 mm. One element at the left boundary is given a small material imperfection. The
effect of the localized mode with a fixed width / on the load-displacement curve (F--u) is
clear. With standard elements without the additional mode (Fig. 4--top) the results are
mesh dependent. More elements produce a more brittle response. Use of the weak dis-
continuity elements with the same value for /in the analyses with the different meshes solves
this problem (Fig. 4 --bottom).

Secondly, we will analyze localization in pure shear. For the mode-I1 case the normal
to the failure plane n is perpendicular to vector m, i.e. n” =(1,0)" and m" =(0, 1)". With
eqns (10) and (1) it is clear that the localized mode is only added to the shear strain
parallel to the shear band and we obtain

Ay, =(l—x,)BAa (76)
and

Avs =(142,)BAa, (77)
in which a now contains the vertical displacements. The compatibility condition for the

pure mode-I1 case results in the same dependence between the mode amplitudes as in the
mode-I case

/ AN

7

in which / now is the width of the shear band. Traction continuity over the shear band
reads

At = At.. (79)

[f we use the constitutive equations for the elastic part [eqn (43)] and for the localized part
[eqn (52)] we obtain
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hE

G = 3k

Ay-. (80)

in which G = E/2 the shear modulus and / the softening modulus as generally defined in
eqn (50). To specify h we assume a Von Mises type vield function according to

./'(1.?»,() = \;"(3@ —~ (K}, (81)

with & the yield stress as a function of the equivalent plastic strain x and assume a strain-
softening hypothesis

Then expression (50) for the softening modulus reduces to

da
o= (83)
di
[f we take linear softening we have h = —a,/r,, in which &, is the initial yield stress and «,

is the ultimate equivalent plastic strain. Again. combination of eqn (80) with (76}, (77) and
(78) gives the explicit expressions for the amplitudes

o 3d 7 %4
T SR 20 (54)
and
3Ed—1) .
> = B Y (85)

For the mode-I1 problem we analyzed a shear layer (Fig. 5) that has been modelled with
the three-noded triangular element (see Fig. 2). All displacements in horizontal direction are
zero to avoid bending effects. The shear layer has the same dimensions as the tension bar
discussed above. The material parameter set is as follows : the Young's modulus £ = 20.000
N/mm?, the initial vield stress &, = \,."‘3 N/mm?, the ultimate equivalent plastic strain

L. = 100 mun

S B e e e |

)
A=1mm" 20 ¢lements v

ENNMSHHU NN NGNS

40 elements v

-
Yu
Fig. 5. Shear layer with three-noded triangular elements.
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F/(ThA)
1.0 -
0.5 20
40
0.0 Wy L)
{ 0.05 0.10
FlT,A)
1.0 -
0.5 - 20
44
0.0 - V(z,L)
o 0.05 0.10
£ f()/\)
1.0-
20
05 N\ 40
exact Y
0.0 \\I N vy, L)
u ye ly, 0.05

Fig. 6. Load-displacement_curves. Top: standard element. Centre: discontinuity element with
= QL Bottom : discontinuity element with « is “exact™.

Ky = 0.()],/\,,1'/3 and the shear band width /= 2 mm. These parameters result in a shear
modulus G = 10.000 N/mm?>, an initial shear yield stress %, = 1 N/mm” and an ultimate
shear strain y, = 0.01. This makes the problem equivatent to the tension problem. In both
meshes (20 and 40 elements) two elements have been given a small material imperfection.
With the standard constant strain triangle we obtain the same mesh-dependent results as
for the standard truss elements for mode-1 locahzation (Fig. 6—top). For the discontinuity
elements the results heavily depend on the definition of the shear band length a. If we take
a = /Q [eqn (67)] the load—deformation curve from Fig. 6-centre is obtained. For this
mode-II problem the mesh dependence is still there because mesh refinement leads to a
smaller area Q of an element and therefore to a decrease of ¢ and a decrease of the strain
energy consumption in this configuration. This problem becomes more significant with a
high aspect ratio of the finite element. If we calculate @ correctly, i.e. dependent on the
angle under which the localized mode is supertimposed, the results can be made mesh
objective (see Fig. 6--bottom). Remarkable then is that the ultimate deformation is larger
than the analytical value £y, (see dashed line in Fig. 6--bottom). This is due to the overlap
in shear band length between the two shear bands in the two impertfect elements. The shear
band in each of the two elements goes through the imtegration point of the triangle which
results in a length of 2/3 mm per element and 4/3 mm in total. For this reason we slightly
overestimate the ultimate deformation in a set-up as shown here.

A two-dimensional analysis of shear banding in a biaxial test has been carried out.
The influence of mesh size and mesh orientation has been analyzed. The sample is fixed at
the bottom in vertical direction and compressed at the top with a constant velocity. The
length of the sample is 12 mm and the width is 6 mm. The material parameter set is as
follows : the Young’s modulus £ = 20.000 N:mm*, Poisson’s ratio v = 0.3, the initial yield
stress @, = 20 N/mm”. the ultimate equivalent plastic struin x, = .05 and the shear band
width /= 0.2 mm. Again Von Mises plasticity with linear strain softening has been used
with plane strain elements. The fixed discontinuity concept as described in Section 3 has
been applied and the shear band length per element « is calculated exactly. One element at
the left side of the sample is given a small material imperfection. First two structured meshes
with 144 and 576 elements, respectively, have been analyzed. The deformed models and
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Fig. 7. Top: deformed model structured meshes. Bottom @ load -displacement curve.

the load-displacement curve show mesh-size independence (see Fig. 7). The slope of the
descending branch is determined by the softening modulus and the length scale parameter.

Next two unstructured meshes have been used to investigate the influence of mesh
orientation. The fully unstructured mesh (Fig. 8--left) gives different results with respect

Fig. 8. Left: unstroctured mesh. Right @ unstructured “aligned™ mesh.
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Fig. 9. Top: deformed model unstructured meshes. Bottom : load-displacement curve.

to the structured meshes. From Fig. 9 it 1s observed that a different fatlure mode is triggered
by this finite element configuration. The load-displacement diagram also shows locking
behavior of the solution. This is a well known property of the underlying constant strain
triangle. This behavior can be improved by the addition of extra continuous shape functions
(e.g. bubble functions, see Armero and Garikipati, 1995). A second unstructured mesh has
been used for which a realignment procedure has been used (Fig. 8-—right). The mesh is
aligned with the shear band on the basis of the acoustic tensor (Sluys ef af.. 1998). Now, a
proper shear band can be calculated, however, the load--displacement diagram shows a
slightly more ductile response than the structured mesh.

7. COMPARISON WITH STANDARD MODELS

The similarities and diflerences between the model presented here and the standard
models for the description of failure will be discussed. For instance, for mode-1 fracture the
crack band model (Pietruszczak and Mroz. 1981 ; Bazant and Oh, 1983 : Willam, 1984
Rots. 1988) 1s widely used. In this model the crack is smeared over the finite element and
the softening modulus is made a function of the finite element size. It can be shown that
the weak discontinuity model for mode-I failure as discussed in Section 3 provides exactly
the same set of discretized equations as for the crack band model in the one-dimensional
case under pure mode-I loading and with the length scale in the discontinuity model taken
equal to the element size (see Berends, 1996). In general the formulations are different and
a first advantage of the discontinuity model is that the length scale parameter 7 acts as a
material parameter and is not dependent on the mesh. Due to this and the proper calculation
of the crack length @ the area per element that goes into softening is calculated in a proper
way. On the other hand, for the crack band model this is still a undefined issue. Actually,
the so-called crack band width is taken independent of the direction of crack propagation
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and is also independent of the aspect ratio of a finite element. However. this may cause a
considerable under- or overestimation of the energy consumed in the crack and a mesh
dependence. The discontinuity model can be improved by connecting the crack between
elements. An overlap of cracks or shear bands as shown in the previous section is then
excluded. A second advantage of the weak discontinuity model presented here is that mesh
sensitivity of the shear component of the crack strain is solved. Namely. in the crack band
model the shear reduction factor f is a constant and not a function of the element size. As
a consequence, the use of a finer mesh leads to a smaller cracked area in which the shear
stiffness is reduced and to mesh dependence. On the other hand, in the discontinuity model
the area in which the shear stiffness is reduced is set by /and is not a function of the element
size. A mesh-dependent effect is therefore excluded.

8. CONCLUSIONS

The use of continuum models for the description of failure leads to mesh-objective
results when a length scale parameter is introduced n the formulation. A disadvantage of
such a continuum formulation is that very fine meshes are needed to obtain an accurate
strain profile inside the localization zone. For this reason, the discrete approach in which
the localization zone in thickness direction is captured in one element seems to be more
appealing for large scale computations. In this paper a model with discontinuous functions
of the displacement gradient is used. An additional localized mode is added to the standard
shape functions of the finite element. A length scale parameter 1s introduced which is a
material parameter and can be related to the size of the fracture process zone or the width
of the shear band. The amplitudes of the tocalized mode are obtained from the traction
continuity condition that must be satisfied over the discontinuity line and the assumption of
compatibility of deformation. The model can be combined with different sets of constitutive
equations. Here we elaborated the model for a fracture model and a plasticity model.
Simple mode-1 and mode-1I problems have been analyzed to reveal the performance of the
model with respect to mesh-size and mesh-orientation sensitivity. From the two-dimensional
analysis with an unstructured mesh it can be seen that the problem of mesh alignment 1s
not solved with this weak discontinuity model. In this case the concept should be combined
with a mesh-realignment strategy. Furthermore. a comparison with standard continuum
models Tor fracture shows the similarities for a specific one-dimensional case and the
differences with respect to the role of the length scale parameter and the behavior of the
models under mode-11 loading conditions.
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